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Pyridine nucleotide-dependent oxidoreduction reactions are
among the most extensively studied enzymatic reactions. A great
number of dehydrogenases of this class, which catalyze the
interconversion of a carbonyl and a hydroxyl group, are known
with a broad structural range of substrate specificities and diverse
catalytic roles.1 Factors that determine the stereoselectivity of this
class of enzymes have been extensively studied.2 However, little
consideration has been given to the related issues that govern the
regioselectivity of catalysis. This lack of attention may stem from
the fact that hydride addition always occurs at the carbonyl carbon
when a keto-substrate is reduced with NAD(P)H. This strict
conservation of regiospecificity is predicated by the chemical nature
of the keto group and the close proximity of the hydride donor and
acceptor.3 As a part of our ongoing efforts to develop inhibitors
for TDP-L-rhamnose synthase, which catalyzes the conversion of
TDP-6-deoxy-L-lyxo-4-hexulose (1) to TDP-L-rhamnose (2), we
examined the properties of an analogue of1 in which the
difluoromethylene group replaces the carbonyl group. Interestingly,
we noted that the enzyme catalyzes a hydride transfer to the
difluoromethylene appendage in this analogue (8) at the difluori-
nated end, opposite from the site predicted on the basis of the
reduction of a normal keto functional group. This observation is
significant because it represents the first example showing that the
regiospecificity of hydride transfer catalyzed by a pyridine nucle-
otide-dependent enzyme can be changed by altering the electro-
chemical properties of the reaction center. The results are reported
herein.

The initial rationale for our inhibitor design is based on the
premise that a difluoromethylene group (3) is a potential isostere
of the carbonyl group due to the comparable electronegativity of
fluorine and oxygen, and the capability of both atoms to serve as
hydrogen-bond acceptors.4 As illustrated in Scheme 1, the enzyme-
catalyzed hydride reduction of3, if it follows the regiospecificity
of normal catalysis, would lead to a carbanion intermediate (4).
However, beause of the repulsion (Iπ) between the electron pair of
the anionic center and those of the fluorines,4,5 formation of this
R-fluoro-substituted carbanion (4) is not favored. Such a repulsive
interaction can be alleviated by releasing a fluoride ion from4.
This R-elimination may be facilitated by the H-bond networking
in the active site, and the nascent reactive carbene species (5) could
covalently modify a proximal residue and inactivate the enzyme.
In contrast, hydride addition to the terminal carbon of3 would
generate aâ-fluorinated carbanion6 which can be stabilized
inductively by the fluorine electron-withdrawing effect,4,5 and also
by the negative hyperconjugation.6 In fact, it is well established

that nucleophilic addition to fluoroalkenes prefers a route in which
the number of fluorinesâ to the electron-rich carbon in the transition
state is maximized.7 Thus, an opposite regioselective addition based
solidly on chemical precedence may occur for the hydride reduction
of 3. As shown in Scheme 1, elimination of a fluoride ion from6
would yield an electrophilic intermediate7 which could trap an
active site nucleophilic residue, resulting in enzyme inactivation.
To test this idea, we synthesized TDP-4,6-dideoxy-4-difluorometh-
ylene-L-lyxo-hex-4-enopyranose (8) and examined its effect on the
catalysis of the purified TDP-L-rhamnose synthase (RfbD).8 This
dehydrogenase is NADH-dependent, and its catalysis involves the
hydride transfer of the 4′-HS of NADH to reduce the 4-keto group
of 1 to form TDP-L-rhamnose (2).

Compound8 was prepared starting from methylL-rhamnose and
was isolated as a mixture ofR and â anomers (8r:8â ) 3:1).9

Because of the instability of8 upon further purification and
lyophilization, this mixture was used directly in the subsequent
experiments.10 When TDP-L-rhamnose synthase (1µM) was
incubated with excess8 (6.1 mM of theR/â mixture), no irreversible
inactivation was detected. On the contrary, the enzyme recognizes
8 as a substrate, and catalysis follows Michaelis-Menten kinetics
with a kcat ) 12.7( 3.8 min-1 and aKm ) 40.1( 17.0 mM in 50
mM potassium phosphate buffer (pH 7.5) at 20°C.11 Comparing
thekcat ) 258.3( 25.0 min-1 andKm ) 0.30( 0.03 mM for the
natural substrate (1) under identical conditions, this difluorometh-
ylene analogue (8) is clearly a kinetically competent, albeit very
poor, substrate.

The19F NMR of 8â exhibits two doublets atδ -87.7 and-92.5
(J ) 41.5 Hz). The intensity of these two doublets decreased with
the concomitant appearance of a singlet atδ -119.9 when8 (7.6
mM) was incubated with TDP-L-rhamnose synthase (1µM) and
NADH (0.28 mM) in 50 mM potassium phosphate buffer (pH 7.5)
at room temperature. Because this new signal coincides with the
resonance of fluoride ion, the enzymatic processing of8â must
involve C-F bond cleavage. The turnover product(s) was identified
by a previously developed GC/MS method12 in which the sugar
products, generated in the incubation with [4′S-2H]NADH,13 were
subjected to acid hydrolysis, sodium borohydride reduction, and
acetylation in sequence to yield glycidol tetraacetates whose MS
fragmentation patterns could be readily analyzed.12 On the basis
of the GC/MS (both EI and CI) results, we concluded that these
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glycidol derivatives are a mixture of9, 10, and11.14 Interestingly,

the mass spectra for the C-4 containing fragments in10 and11 are
uniformly shifted by one mass unit, and each of those fragments
in 11 also contains a M+ 2 peak. Such an increment of one and/
or two mass unit(s) of these C-4 bearing fragments is indicative of
deuterium incorporation from [4′S-2H]-NADH into the turnover
products at C-4′ of the exocyclic difluoromethylene group. Such a
reversal of regioselectivity for hydride transfer has not been reported
for pyridine nucleotide-dependent enzymes.

Our results may be directly explained by a mechanism in which
the addition of hydride from NADH occurs at the difluorinated
carbon of the exocyclic methylene double bond of8 (Scheme 2A).
The π bond can be restored when the nascent carbanion (12)
eliminates one of theâ-fluorines to give13.15 A second round of
hydride reduction will result in loss of the remaining vinylic fluoride
to afford 14.16 This mechanistic proposal is unique because the
enzyme-catalyzed hydride transfer takes place at the opposite end
of theπ bond in the reduction of a difluoromethylene group from
what is observed in the reduction of a carbonyl group. An alternative
route (Scheme 2B), which does not alter the regiochemistry of the
initial hydride addition, is also conceivable. This mechanism
involves the formation of a carbene intermediate (15) followed by
a 1,2-H shift to give13, which then undergoes a second round of
carbene formation and 1,2-H rearrangement to yield the observed
product (14). The proposed rearrangement is well documented in
carbene chemistry17 and is expected to be extremely facile.18

However, while proposed, the intermediacy of a carbene species
has not been fully substantiated in enzyme catalysis.19

Clearly, the difluoromethylene functionality in compound8 has
assumed a role as a carbonyl mimic with an apparently reversed
regioselectivity for hydride reduction. The implication of either the
reversal of the site of hydride attack or the participation of a carbene
intermediate to account for the experimental results is provocative.
While the regiospecificity of hydride reduction in enzyme reactions
is determined by the effective binding of the substrate with a defined
orientation in the enzyme active site, our results indicate that the

regioselectivity can also be affected by the electrochemical
characteristics of the reaction center. Even though the competence
of the difluoromethylene group as a carbonyl equivalent is poor,
the alternative outcome in regioselectivity of hydride reduction may
find application in enzyme catalysis.
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